Rapamycin increases mitochondrial efficiency by mtDNA-dependent reprogramming of mitochondrial metabolism in Drosophila.
نویسندگان
چکیده
Downregulation of the mammalian target of rapamycin (mTOR) pathway by its inhibitor rapamycin is emerging as a potential pharmacological intervention that mimics the beneficial effects of dietary restriction. Modulation of mTOR has diverse effects on mitochondrial metabolism and biogenesis, but the role of the mitochondrial genotype in mediating these effects remains unknown. Here, we use novel mitochondrial genome replacement strains in Drosophila to test the hypothesis that genes encoded in mitochondrial DNA (mtDNA) influence the mTOR pathway. We show that rapamycin increases mitochondrial respiration and succinate dehydrogenase activity, decreases H2O2 production and generates distinct shifts in the metabolite profiles of isolated mitochondria versus whole Drosophila. These effects are disabled when divergent mitochondrial genomes from D. simulans are placed into a common nuclear background, demonstrating that the benefits of rapamycin to mitochondrial metabolism depend on genes encoded in the mtDNA. Rapamycin is able to enhance mitochondrial respiration when succinate dehydrogenase activity is blocked, suggesting that the beneficial effects of rapamycin on these two processes are independent. Overall, this study provides the first evidence for a link between mitochondrial genotype and the effects of rapamycin on mitochondrial metabolic pathways.
منابع مشابه
P-201: Prevalence of 4977bp Deletion in Mitochondrial DNA in IVF Failure Women
Background: Successful IVF process is limited by factors such as oocyte quality. Oocyte quality can be defined as its abilities to be fertilized, mature and give rise to normal offspring and it is dependent on nuclear maturation and cytoplasm maturation. Damage to mitochondrial DNA (mtDNA) has been described in oocytes in IVF failure women that decrease cytoplasmic quality because Mitochondria ...
متن کاملmtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling
mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDN...
متن کاملMitochondrial DNA Mutations, Pathogenicity and Inheritance
Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...
متن کاملRole of Mitochondria in Ataxia-Telangiectasia: Investigation of Mitochondrial Deletions and Haplogroups
Ataxia-Telangiectasia (AT) is a rare human neurodegenerative autosomal recessive multisystem disease that is characterized by a wide range of features including, progressive cerebellar ataxia with onset during infancy, occulocutaneous telangiectasia, susceptibility to neoplasia, occulomotor disturbances, chromosomal instability and growth and developmental abnormalities. Mitochondrial DNA (mtDN...
متن کاملEffect of Vitamin D3 on Mitochondrial Biogenesis in Granulosa Cells Derived from Polycystic Ovary Syndrome
Background: Polycystic ovary syndrome (PCOS) is an endocrine disorder diagnosed by anovulation hyperandrogenism.Hyperandrogenism increases apoptosis, which will eventually disturb follicular growth in PCOS patients.Since mitochondria regulate apoptosis, they might be affected by high incidence of follicular atresia. This may causeinfertility. Since vitamin D3 has been shown to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 127 Pt 10 شماره
صفحات -
تاریخ انتشار 2014